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Scaling theory of the paranematic-nematic critical point 

by CHESTER A. VAUSE, I11 
Department of Physics and Astronomy, University of Hawaii at Manoa, 

2505 Correa Road, Honolulu, Hawaii 96822, U.S.A. 

(Received 1 1  July 1990; accepted 5 September 1990) 

A thermodymanic scaling analysis of the paranematic-nematic critical point is 
presented. Although presumed to be in the Ising universality class, general 
arguments suggest that the order parameter approaches the critical point in an 
asymmetrical manner in contrast to mean-field predictions. 

Upon lowering of the temperature in an orientationally isotropic liquid phase of 
nematic molecules, a first-order phase transition to an anisotropic liquid phase is 
possible. This isotropic-nematic phase transition involves an orientational symmetry 
change and as a result only an isolated critical point on the first-order transition line, 
known as the Landau point, is possible [l-31. This multicritical point has been 
observed in certain lyotropic materials [4]. The application of a uniform electric (or 
magnetic) field to a uniaxial nematic fluid which has positive dielectric anisotropy (or 
positive diamagnetic anisotropy in the magnetic case) induces the thermally averaged 
local direction of the molecules to be parallel to the external field direction. The zero- 
field isotropic phase becomes paranematic, and a line of first-order paranematic- 
nematic transitions develops in the temperature, external field plane. Such a 
coexistence curve has been observed experimentally [S]. Since there is no symmetry 
change in going from a paranematic liquid to a nematic liquid, the possibility exists for 
gradual weakening of the first-order transition. Thus the coexistence curve in the 
temperature, external field plane may eventually terminate at an ordinary critical point 
of the liquid-gas type. Although such a scenario has yet to be achieved experimentally, 
there have been several theoretical investigations which predict the existence of a 
paranematic-nematic critical point (PNCP) within mean-field arguments [d-lo]. 
Since it is known that critical fluctuations may drastically alter mean-field results, it is 
timely to discuss the PNCP from the general point of view that can be provided by the 
thermodynamic scaling theory of critical phenomena in anticipation of future 
experimental progress. 

Thermodynamic scaling theory [l 11 for the problem of the PNCP starts with the 
assumption that near a critical point, the singular part of the free energy per unit 
volume is a homogeneous function of the appropriate scaling fields [l2]. There are two 
relevant scaling fields since the PNCP is obtained by adjusting both the temperature T 
and the external field E to critical values T, and E ,  (we use E to generically denote 
electric or magnetic fields). An appropriate dimensionless measure of the thermal 
‘distance’ from the PNCP is t=(T-TJT, .  For the external field, the appropriate 
quantity is h = Ax(E2 - E;)/E;,  where Ax > 0 is the molecular anisotropy (dielectric or 
diamagnetic) of the nematic system [a]. The thermal scaling field t and external field 
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28 C. A. Vause, I11 

scaling field h are analytic functions t and h in general, and the singular part of the free 
energy density takes the form 

FSin&S1"t, S'"'h) = SdFsinE(t, h), (1) 

where s is an arbitrary dimensionless scale change, v is the correlation length critical 
exponent, A is the external field critical exponent, and d = 3 is the dimension of the 
system. Choosing s to be the correlation length (appropriately normalized) gives the 
condition, sl/'lt( = 1. Hence, we obtain 

~, i" ,~~,~~=I~l2-=@,(hl~l-3,  (2) 
where dv = 2 - a  (hyperscaling relation) defines the specific heat critical exponent, and 
@(x) = Fsinp( 1, x) is a universal scaling function of x = hltl-'. 

In the vicinity of the PNCP, critical fluctuations occur in the degree ofanisotropy of 
the paranematic and nematic phases which is quantified by a scalar order parameter, $. 
The direction of the anisotropy is parallel to the external field and is non-critical. This 
suggests the hypothesis that the critical exponents and scaling function of the PNCP 
belong to the n = 1 universality class of the spin - 1/2 Ising model [ 131. A consequence 
of this hypothesis is that the scaling fields for a system in the Ising universality class 
have the important property that the coexistence curve is h=O for T< T,. 

For example, a uniaxial ferromagnet (the canonical system described by the 
spin - lj2 Ising model) has h = 0, t < 0 as the coexistence curve in the (t, h) plane, where h 
is the (dimensionless) externally applied magnetic field. This is a consequence of the fact 
that the underlying microscopic hamiltonian is invariant under time reversal symmetry 
and thus is unchanged under reversal of the externally applied magnetic field, h+ - h. 
As a result, the scaling fields [ 121 are just h = h, t = t (see the figure (a)). Hence, the 
thermodynamic conjugate to the external field, the magnetization (order parameter), 
on the coexistence curve is 

and we obtain 

where the order parameter critical exponent is b= 2 - a - A, and @'(O)= (d@/dx), = o. 

*, = - (af'sing/ah),+ + ~ l  (3) 

m, = f Itlfl@'(o), (4) 

m l E h C €  CURVE 

(a) Sketch of a coexistence curve terminating at a critical point in the reduced temperature ( t )  
and reduced field (h) plane for an king symmetric system, such as a uniaxial ferromagnet. 
The bold symbols are the respective scaling fields, t and b, which are identical to t and h in 
this case. (b) In the asymmetric case, the coexistence curve in the ( t ,h)  plane has no 
particular symmetry, however, the directions of the scaling fields reflect the assumed 
underlying Ising universality near the paranematic-nematic critical point. 
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Paranematic-nematic critical point 29 

O n  the other hand for the nematic system, the 'external field', which couples to the 
order parameter, is not proportional to the applied external electric or magnetic field, 
but rather its square. As a result, near the PNCP, the 'field' which couples to the order 
parameter is h = Az(EZ - E:)/E: as previously stated. The PNCP has no symmetry 
between h and - h since, for a given h, states with -hare not possible for Ax =- 0 and any 
reversal of the external field direction. As a consequence of this lack of symmetry 
between h and - h, the general form of the scaling fields near the critical point are linear 
combinations 

h = h  + At, 

t = t + Bh, 
( 5 )  

where A and B are non-universal (system dependent) constants. See the figure (b). 
However, since the underlying Ising universality of the PNCP system requires that the 
coexistence curve is determined by setting the scaling field h=O, for t<O,  the 
paranematic-nematic order parameter, 

on the first-order line near the PNCP is 

Y, = * / ( I  -~~ ) t lW(O)+B(2 - -a ) l ( l  -AB)tl'-"@(O). (7) 

(Y+ - Y y ) / 2 =  1(1 - A ~ ) t l W ( 0 ) ,  (8) 

(Y+ +Y-)/2=8(2-a)l(l -AB)tl'-"@(o). (9) 

Hence, the half-width of the coexistence region is 

and the average value of the order parameter in the coexistence region is 114-16) 

This results for the half-width, equation (8), and the average value, equation (9), are 
consequences of fluctuations in the vicinity of the PNCP. Thus, the mean-field 
prediction [8-101 

(Y+ +Y_)/2%0,  (10) 

is lacking in this respect. Baring the accidental vanishing of the non-universal 
amplitude By we reach the conclusion that the order parameter approaches the critical 
point from the paranematic and nematic phases in an asymmetrical manner and in 
addition develops a singularity in its average value (a diverging slope proportional to 
the heat capacity) at the PNCP. It is important to note that the thermodynamic 
scaling analysis can only suggest that there is no underlying symmetry argument 
requiring B to vanish identically. The existence of a non-zero B requires a detailed 
analysis of the interaction between the critical and non-critical degrees of freedom. 
Such a study will be reported in a future work. 
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